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Spectral-Domain Analysis of Periodically
Nonuniform Coupled Microstrip Lines

FRANZ-JOSEF GLANDORF AND INGO WOLFF, FELLOW, lEEE

.’!fmt~act — Periodically nonuniform coupled microstrip lines are analyzed

on the basis of a nume;cal field calculation. As in the case of the single

nonuniform microstrip line described in an earlier paper by the authors,

Floquet’s theorem is used to express all field quantities iu terms of their

spatial harmonics. ‘Ihe boundary vahre problem is formulated in a rigorous

way and then solved using Galerkin’s method in the Fourier-transform

domain. Numerical and experimental results are presented.

I. INTRODUCTION

I N AN EARLIER paper [1] the authors described a

spectral-domain analysis of a single, periodically non-

uniform microstrip line. In the introduction of that paper

an overview was given which briefly described the litera-
ture in the area of nonuniform microstrip lines and how

the method used by the authors deviated from earlier

theories. Therefore this shall not be repeated here.

In this paper the problem of coupled, periodically non-

uniform microstrip lines is investigated on the basis of the

same spectral-domain calculation method as in [1]. These

lines are interesting for the design of planar directional

couplers with high directivity [2]–[4]. The fundamentals

from the theory described in [1] will be used here without

repetition, but new aspects which must be considered in

the formulation of the tangential electric fields in the

boundary between the substrate material and the air region

as well as in the formulation of the surface current density

in the metal strips will be studied in detail.

Numerical results will be presented for the case of two

coupled microstrip lines with a sinusoidally varying cou-

pling slot and for the case of a zigzag-shaped coupling slot.

The convergence behavior will be discussed and numerical

results will be compared to experiments.

II, FORMULATION OF THE EIGENVALUE PROBLEM

Coupled, periodically nonuniform microstrip lines with

periodicity p as shown in Fig. 1 are investigated. It is

assumed that the lines have the cross section shown in Fig.
l(a). All geometrical parameters and material parameters

are defined in Fig. 1. The thickness of the top metallization

(microstrip structure) is assumed to be zero. The two lines
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which form the coupled line structure are denoted as line 1

and line 2, respectively. The outer contours of the metallic

strips are described by the periodic functions w~l)( z ) and

w 12)(z) and the inner contours by W}lJ(Z ) and wj2J(z) (Fig.

l(b)). The widths of the two metal strips are w(1)(z)=

lw~’)(z)– W}l)(Z)I and W(2)(Z)= Iw)’)(z)- W}2)(Z)I. The

functions w~l)’(2)( z ), w~l)’(2)(z), and w(1)’(2)(z) are periodic

functions with periodicity p in relation to the z coordinate.

As in the case of the single line, only structures with even

contour functions will be investigated here (see arguments

in [1]):

w:’)(z) =w;l)(– z), w}~)=wf~)(– z), 1=1,2. (1)

Additionally only lines which fulfill the following condi-

tions:

W(2)(Z) = - wJl)(z+ p/2), w:2)(z) = - w:l)(z+ p/2)1
(2)

shall be considered. These additional requirements, which

are fulfilled by the coupled microstrip line shown in Fig. 1,

drastically reduce the numerical expense in the computa-

tion process.

Line structures of the type shown in Fig. 1 are no longer

symmetric with respect to the z axis as in the case of the

single lines treated in [1]. Therefore the potential functions

cannot be written as even or odd functions with respect to

the x coordinate, as in the case of the single line [1, eq.

(5)], and additional sine and cosine functions must be

considered:

@i(x, y) = 5 a~,”sin(k~.,(y +y’))”sin(k..x)
~=1

+ ~ c;~”sin(kj~~(y + y’)) ”cos(kXmx)
~=o

Vh(X, Y) = E b;~”cos (kjn~(y +y’))-cos(kXnx)
~=1

+ 5 ak”co@?JY+ Y’)) ”sw. md (3)
m=l

with i = 1,11, yI = d, yll= – h, kXH = (n –0.5)~/a, kX~

= m w/a, and

k;:~ = k: –k:n –/3:,

k;;~ = k: – k:m –/3:, k:= k;<:.
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Fig. 1. Nonuniform, coupled microstrip lines. (a) Cross-sectional view. (b) Example of two coupled lines with sinusoidal
coupling slot structure.

The calculation of the electric and the magnetic field

strength from the potential functions can be performed in

the same way as in the case of the single line. Also, the

components of the surface current density are no longer

even or odd functions of the x coordinate, and the two-

dimensional Fourier series for JX and the J, now must be

written as

{
Jx = km ~ Jxnksin(k..x)

k=–ec n=l

~=o )

(J,= y f J.#os(k.nx)

k=–m n=l

cc

)+~J.~ksin(kxmx) ejfi”. (4)
~=1

The x and z components of the electric field strength in

the substrate surface, considering the total potential func-

tions in (3), are

+02 m

-EXlv.o= x h JrxxnkJxnk + rxZnkJ=nk) SiII(kxnX)

k=–co[n=l

m

+ ~ (jrxxtnkJxwk + ‘XZrnkJZW2k)

~=o

. COS (kXnx )}
ej~kz

(’‘zI.”=0 = km ~ (- hd..k + jrzznkJ.nk)

k=–m n=l

- COS (kX.x)

+ ~ ( – ‘xzmkJxmk + jrmnkJztnk)
~=1

}

.sin(kX~x) e’pkz. (5)

The coefficients rzz.k, rX,.k, and I’,z.~ are identical with

those given in [1, eq. (8b)]. The coefficients 17XXHi~,17XzWlk,

and 17z=~kcan also be calculated from [1, eq. (8b)] if the

index n is replaced by m, and additionally the coefficients

r ~zmk are multiplied by – 1.

As in the case of the single line, the surface current

density is developed into a series using a functional system

which will be described later [1, eq. (9)]. If JU is the

component of the surface current density normal to the

strip contour and JU is the component parallel to it,

[1[JU _ Cos(cr(x, z)) 1[l=m]–sin(u(x, z)) JX

Jo – sin(a(x, z)) cos(a(x> z)) J,

(6)

with a(x, z) given by [1, eq. (15)]. JU must vanish on the

strip contour. .?Omust fulfill the edge condition [6], i.e., for

the infinitely thin metallization it must have a singularity

of the order 0( p – 05) at the strip edge. The edge condition

is not essentially changed in the case of curved edges [7]. A

series description of these two components now is

JU = ~ ~ ‘~w u$~)X\V)(x, z)e~~’z
“=11= 1[=—~

JO= ~ ~ ‘~~ uf)Z~V)(x, z)e~~” (7)
~=ll=l[=—m

where the index v describes lines 1 and 2, respectively.

Because of the varying line width, the expansion functions

X}”)(x, z) and Z~u)(x, z) must depend on the z coordi-

nate. The expansion functions X}l)(x, z) and Z}l)(x, z)

have nonzero values only on line 1 and vanish otherwise,

whereas the functions Xj2)( x, z) and Z}Z)(x. z) have non-

zero values only on line 2. If all the conditions which have

been formulated for the eigenvalue problem above are

taken into account, the coefficients of the two-dimensional
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Fouriers series expansion (4) are found from

2cx+m

~=lz=l[=—~

with the abbreviations given in the Appendix. Due to the

restrictive conditions (1) and (2) which have been assumed

for the line geometry, special relations between the ab-

breviations are valid (see Appendix, eq. (A2)).

The two metal strips on top of the substrate and the

ground metallization form a three-conductor system.

Therefore two possible fundamental modes must exist on

this line structure. If the amplitude D, of the slot contour

function (Fig. 1) decreases to zero, these solutions must

converge to the fundamental even and odd mode of two

uniform coupled microstrip lines. Therefore these modes

shall be called even and odd also in the case of the

nonuniform coupled lines, despite the fact that the electro-

magnetic field does not have an even or odd symmetry

with respect to the z axis.

For the fundamental even mode the condition

and for the fundamental odd mode the condition

@ = ( – l)lU:}) Vy = - (-l) ’U:}) (lo)

must be valid because of symmetry aspects. Using these

relations, the Fourier series coefficients given in (8) again

can be simplified.

Using the Fourier series coefficients of the surface cur-

rent density given in (8), the x and z components of the

electric field in the surface of the substrate material can be

found as
m +~+~r~

~=l[=—mk=—m L .=1

‘x

)
1

+vf})R,mlkCOS(kxmlx) eJB’z

+ jv$)S,n,k)cos(kxnx)

F?2=1

with

8k = 1 for k even and even modes or k odd and odd modes

i3k = O for k even and odd modes or k odd and even modes

and

$k = 1 for k even and odd modes or k odd and even modes

$k z O for k odd and odd modes or k even and even modes.

The abbreviations again are given in the Appendix

(eq. (A3)).

The total electromagnetic field of coupled nonuniform

microstrip lines is not symmetrical with respect to the x

coordinate, as it is in the case of uniform symmetric

coupled microstrip lines. Nevertheless each space harmonic

partial field (see [1]) contributes only an even or an odd

part to the total field, as can be seen from (11). Therefore

the even and the odd mode on lines which fulfill the

conditions given in (1) and (2) can be computed sep-

arately.

The further solution of the eigenvalue problem is nearly

identical to the case of the single line [1]. Galerkin’s

method is used for the even modes and the odd modes

separately. The expansion functions which are applied to

(5) are

xjl)=sin(iw~).s~(f)

Z:l)=cos((i -l)ng). sin(t) (12)

with Maxwell’s edge function s~

‘m($) =/&
and .$= (x–w~l)(z))/w~lJ (z)

(13)

for Wjl)(z) < x < W}l)(z).

The functions given in (12) are developed into Fourier

series. The integration with respect to the x direction can

be performed analytically; with respect to the z axis it

must be done numerically.

From the application of Galerkin’s method, an infinite

equation system with a real and symmetric coefficient

matrix is derived for the even and odd modes. The series

expansions used in this equation system will be truncated

at indices 1, L, and N, as in the case of the single line [1].

Again, the series for index k are truncated at – ( K + L)

and + (K + L). Elements which contain Fourier coeffi-

cients of expansion functions with an index having an

absolute value larger than K are set to zero. The ad-

ditional series for index m will be truncated at the same

index N as the series for index n. Two truncation indices

IU and Iv are used for the series of the JU and the J,,

components, where IU should be larger than IU. As will be

explained later, the choice of IU = 3 and Iu = 6 is sufficient

for convergence. Therefore the convergence behavior of

the method only needs to be discussed in relation to the

truncation indices N, K of the Fourier series of the expan-

sion functions and the truncation index L of the Fourier

series describing the stu-face current density.

The solutions of the eigenvalue problem again are de-

termined by searching the zeros of the determinant of the
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finite system matrix. As in the case of the single lines, in

addition to microstrip modes, waveguide modes can be

found as solutions of the closed boundary value problem

shown in Fig. 1. All solutions have adjoint higher order

solutions with a phase coefficient which is changed by

2pT/p (p= fl,2, . . .). The solutions can be classified

using the same method as in the case of the single line.

III. THE CONVERGENCE OF THE METHOD

The convergence of the method described is analyzed

using a coupled line structure with a sinusoidal contour

function of the coupling slot, as shown in Fig. l(b).’ The

geometrical parameters of the line structure used liere are

Wg= Iwjl) – iv~2)l =10.0 mm, s = 0.42 m, p = 8.75 mm,

and D, =1.0 mm. The substrate material has a height

h =’1.56 mm and a relative dielectric constant e,= 2.32.’

As in the case of the nonuniform single microstrip line,

the accuracy of the computed effective dielectric constant

depends on the number of expansion functions as well as

the number of Fourier coefficients which have been taken

into account for calculating the surface current density.

Additionally, it depends on the accurate description of the

expansion functions in the spectral domain, i.e., on the

number of coefficients considered of the Fourier series for

the electromagnetic fields.

Concerning the transformation of the expansion func-

tions into the spectral domain, it must be considered that

not only the transformation of the expansion functions

itself but also the transformation of the contour function

of the coupling slot must ‘be carried out with sufficient

accuracy. For the transformation of the expansion func-

tions into the spectral domain, in the x direction N =

max(4* 10 * F * a/wtin, 4a/s) spectral terms will be con-

sidered. Here Wfi is the smallest strip width of lines 1 and

2, and 2a is the width of the metallic shielding. F is a

numerical factor describing the value of N. It is found that

for the expansion functions given in (12) the convergence

of the method is achieved for F = 2. If it is required that

the error of the effective dielectric constant be less than 0.2

percent, six u components (lU = 6) and three u compo-

nents ( IU = 3) (see (7)) of the surface current density must

be taken into account.

Fig. 2 shows the error of the numerically determined

effective dielectric constant in relation to the cutoff index

K of the Fourier series expansion of the electromagnetic

field a) for the phase coefficient ~~ = /3p/m = 0.1 and

b) for ~~ = 0.25. The error is calculated by comparing the

actual value of the effective dielectric constant with its

value for K = 20 and L = 7. Again, as in the case of the

single nonuniform line [1], the frequency dependence of

the convergence can be recognized. For values of the

normalized phase coefficient ~~ = 0.25 (X= 8p, f = 3

GHz), the convergence of the fundamental odd mode @

particular is much better than in the case of ~~ = 0.1. As a

result it is found that for ‘a sure convergence, K =
1.5 * N * D~/a Fourier coefficients have to be considered

in the transformation of the expansion functions into the

spectral domain. For the line structure considered this

means that the results are of satisfactory accuracy if K = 15.
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Fig. 2. The convergence of the numerically determined effective dielec-
tric constants of two’ coupled microstrip lines with a sinusoidal cou-
pling slot structure as a function of the truncation index K of’ the
Fourier series describing the electromagnetic fields. Line par~eters:

Wg= [w$J – w~21I = 10.0 mm, s = 0.42 mm, p = 8.7,5mm, D. =1.0 mm.
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Fig. 3. The convergence of the numerically determined effective dielec-

tric constants of two coupled microstnp lines with a sinusoidal cou-
pling slot structure as a function of the truncation index L of the
Fourier series describing the surface current density. For line and

substrate parameters, see Fig. 2.

Fig. 3 shows the relative error of the numerically de-

termined effective dielectric constant of the fundamental

even and odd modes in relation to the number L‘ of the

Fourier coefficients of the surface current density consid-

ered. The actual values are compared to those values which

have been computed with K ❑ = 20’ and L = 10. The

frequency dependence of the convergence is not as clear in

this case as in Fig. 2. The relative error of the numerically

determined effective dielectric constant is less than 0.05

percent if L & 7.

Figs, 4 and 5 show equivalent results for the conver-

gence in the case of a coupled microstrip line with a

zigzag-shaped coupling slot. All geometrical parameters of

this line are identical’ with those of the line with sinusoidal-

ly shaped coupling slot. As can be seen from Fig. 4, the

cutoff index K must be larger than in the case of the

sinusoidally shaped coupling slot to reach the same relative

error for the numerically determined effective dielectric

constant. In this case the cutoff index K must be K =
2* N * D~/a, ~d the result is reached for K > 2(3. A

similar result is found from Fig. 5, where the dependence

of the convergence on the number L of Fourier coeffi-

cients for the surface current description is shown. In this

case the error of the numerically determined” effective

dielectric constant is less than 0.2 percent for L >8. For

values of Ls 7 the relative error is much larger than in the
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Fig. 5. The convergence of the numerically determined effective dielec-

tric constants of two coupled microstnp lines with a zigzag coupling

slot structure as a function of the truncation index L of the Fourier
series describing the surface current density. Line and substrate param-

eters are gwen m Fig. 2.

case of the line with sinusoidally shaped coupling slot. The

relative errors given in Figs. 4 and 5 are estimated by

comparing the actual values of ceff with those computed

for K =20 and L = 10.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In the case of the coupled nonuniform microstrip lines,

primary interest in the investigation is not in the frequency

dependence of the line parameters itself but (e.g. for the

design of directional couplers) in the fact that the phase
velocities of the fundamental even and odd modes may be

equalized by a proper choice of the coupling slot contour.

This effect has been used for the realization of phase

shifters [3] and directional couplers [2]–[4] in microstrip.

In Fig. 6 the effective dielectric constant of three differ-

ent coupled microstrip lines on polyguide substrate material

(c, = 2.32, h = 1.56 mm) and with a sinusoidal contour of

the coupling slot is shown in relation to the amplitude D,

of the contour. The geometrical parameters of the lines are

identical with those of the lines discussed in Section III

(s= 0.42 mm, Wg= 10.0 mm). Lines with periodicities of

p = 8.75 mm, p = 11.67 mm, and p = 17.5 mm are investi-

gated at a wavelength of A =70 mm, which means that the

adjoint normalized phase coefficients are ~~ = ~p/m =

0.25, 0.33, and 0.5, respectively.
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Fig. 6. Theoretical and experimental results for the effective dielectric
constants of the even and the odd mode on two coupled, nonuniform

microstnp lines with a sinusoidal couphng slot structure as a function

of the “amplitude” D. (see Fig. 1) and with the periodicity p as a
parameter.

As can be seen from Fig. 6, the effective dielectric

constant of the fundamental even mode is not greatly

influenced by the amplitude D,, whereas that of the funda-

mental odd mode is strongly dependent on D,. For the

example considered the effective dielectric constant of the

fundamental even mode is changed by only 7 percent if D,

increases from O to 2 mm; additionally the periodicity does

not have a big influence on c,ff of the even mode. This

effect can be explained by the fact that the electromagnetic

field of the odd mode is much more concentrated near the

coupling slot than that of the even mode. Therefore the

influence of the slot contour on the phase velocity of the

odd mode is large, while the influence on the even mode

parameters is only small. Physically this means that for the

odd mode a big part of the electromagnetic energy is

traveling along the slot structure whereas the even mode to

a first approximation travels along the z axis, as in the

case of uniform coupled lines. This also means that the

odd mode exhibits more distinctively the typical slow wave

properties, e.g. the effective dielectric constant of the odd

mode becomes larger than C, = 2.32 for D, = 1.5 mm,

whereas the increase of ~,ff of the even mode is much

smaller (Fig. 6, cf. also [1]).

In Fig. 7 similar results are shown for the example of a

coupled microstrip line with a zigzag-shaped coupling slot.

The geometrical parameters are the same as in the case of

the line with a sinusoidal slot contour function. Initially

the results shown in Figs. 6 and 7 seem identical, but a

comparison in detail shows that the influence of the slot
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the “amplitude” D, (see Fig. 1) and with the periodicity p as a

parameter.

amplitude D, on the effective dielectric constant of the odd

mode is larger for Fig. 6. The physical interpretation of

this effect is that the odd mode fields (to a first approxi-

mation) travel along the coupling slot contour, and there-

fore the effective distance which they have to cover is

larger in the case of the sinusoidal contour than the

zigzag-shaped contour.

Some experimental results from measurements are also

given in Figs. 6 and 7. The resonator method proposed by

Wolff [5] was used for measuring the effective dielectric

constants of the even and the odd modes. This method

eliminates the influence of the end effects of the resonator

structure by comparing the measured results of two reso-

nators of different lengths. The resonators must have iden-

tical geometries and the ratios of their lengths must be the

ratio of two integer numbers. This means in the case of

periodically nonuniform microstrip lines that only reso-

nators of lengths 11= np and Iz = mp with n, m =1,2,3, “ “ “

and n + m can be used. Therefore only measurement re-

sults at certain wavelengths or frequencies which are de-

termined by the periodicity p of the line can be obtained.

The measurement results in Figs. 6 and 7 have been

obtained by using resonators with lengths of 70 mm and

35 mm. The long resonators were used as one-wavelength

resonators whereas the shorter ones were used as half-

wavelength resonators.

As can be seen from Fig. 6 and Fig. 7, the agreement

between theory and measurements is good. The agreement

is better in the case of the zigzag-shaped coupling slot
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contour because at the time of measurements no com-

puter-controlled mask cutter was available and the

sinusoidal contour function could be realized only with

low accuracy.

V, CONCLUSIONS

Periodically nonuniform micrctstrip

analyzed on the basis of a numerical

Floquet’s theorem is used to express all

lines have been

field calculation.

field quantities in

terms of their spatial harmonics. The boundary value

problem has been formulated in ii rigorous way and has

then been solved using Galerkin’s method in the Fourier-

transform domain. The convergence of the method and

numerical results have been discussed. These have been

compared to experiments for the effective dielectric con-

stants of the even and the odd modes. As a result it has

been shown that the even- and odd-mode effective dielec-

tric constants may be equalized for certain line geometries.

The numerical expense of the applied method is high.

Therefore the method in its present form will not be usable

in CAD programs for microwave circuits.

APPENDIX

The abbreviations used in (8) are

cm}:),= (-l)”+lJz”+~Jw’”)’’’cos(a(V))x:)
ap

Zo w:”)(z)

. sin(kX~x) elz~(l–k)Z/p dxdz

S.ZS}J)k= ‘-’) ’+l/zO~Pjw:”)(Z’- jsin(a(U))Z}U)
up

~o Wy(z)

. sin (kXflx)eJ z~(l–k).rlp dxdz

S*C};)k= ‘-l)v+l/zO+P/w)”)(z) -jsin(cLV))X}p)
ap

z“ Wy(z)

.cos(kXnx)e J2u([–k)z/p &&

cm}:),= (-::+lJz”+pJwJ’’(’’cos(a))zj~)~)
z“ w:”)(z)

. cos (kX.x)e jz~(l--k)zlp dxdz

~xcy)k= (-1)’+1,’o+p,w)’(.)cos(a(.))x}u)
ap

z“ W,J”)(z)

.cos(kXMx)eJ Zfl(l-k)zlp dxdz

.sin(kX~x)e~2W( 1-k)ziPdxdz

.sin(kXMx)eJ z~([–k~~/P dxdz. (Al)
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The coefficients are connected by

CXS}:)~ = – (– 1)([ - ‘)c-k’~}~)k

CXCj;{k = ( – 1)(1 - ‘)cxcj~{k

CZC}#k = ( – 1)(’- ‘)CZC};]k

Cz$f;}k = – ( – 1)(1 - ‘)czs}:)k

Sxc;:)k = - ( - 1)(’- ‘%xc/;/k

‘Xs$]k = ( - l)(’-k)sxsi%k

SZS};)k = ( – 1)(1- ‘)S.ZS#]k

Szc$jk = - ( - 1)(’- ‘)szc$}k.

[1]

[2]

[3]

[4]

The abbreviations used in (11) are

Pin[k = rxxnkcxs:;)k – Fxznksxc:jk

Qin[k = ‘zznksxci!)k – ‘xznkcxs/;]k

Rin[k = I’xznkczcj:]k – rxxnkszsjjk

s = rzznkczc):]k – FxznkszsjjkIn[k

Pim,k = rxxmk Cxc::\k – Txzmksxs${k

Qim[k = ‘zzmksxs!#lk – ‘xzmkcxc~~{k

Ri~[k = 17Xz~kCZS$\k – ~X.~~SZC;:\k

Simlk = 17zzmkczs::{k – rxzmkszc:jk .
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