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A Spectral-Domain Analysis of Periodically
Nonuniform Coupled Microstrip Lines

FRANZ-JOSEF GLANDORF aAnD INGO WOLFF, FELLOW, IEEE

Abstract — Periodically nonuniform coupled microstrip lines are analyzed
on the basis of a numerical field calculation. As in the case of the single
nonuniform microstrip line described in an earlier paper by the authors,
Floquet’s theorem is used to express all field quantities in terms of their
spatial harmonics. The boundary value problem is formulated in a rigorous
way and then solved using Galerkin’s method in the Fourier-transform
domain. Numerical and experimental results are presented.

I. INTRODUCTION

N AN EARLIER paper [1] the authors described a

spectral-domain analysis of a single, periodically non-
uniform microstrip line. In the introduction of that paper
an overview was given which briefly described the litera-
ture in the area of nonuniform microstrip lines and how
the method used by the authors deviated from earlier
theories. Therefore this shall not be repeated here.

In this paper the problem of coupled, periodically non-
uniform microstrip lines is investigated on the basis of the
same spectral-domain calculation method as in [1]. These
lines are interesting for the design of planar directional
couplers with high directivity [2]-[4]. The fundamentals
from the theory described in {1} will be used here without
repetition, but new aspects which must be considered in
the formulation of the tangential electric fields in the
boundary between the substrate material and the air region
as well as in the formulation of the surface current density
in the metal strips will be studied in detail.

Numerical results will be presented for the case of two
coupled microstrip lines with a sinusoidally varying cou-
pling slot and for the case of a zigzag-shaped coupling slot.
The convergence behavior will be discussed and numerical
results will be compared to experiments.

II. FORMULATION OF THE EIGENVALUE PROBLEM

Coupled, periodically nonuniform microstrip lines with
periodicity p as shown in Fig. 1 are investigated. It is
assumed that the lines have the cross section shown in Fig.
1(a). All geometrical parameters and material parameters
are defined in Fig. 1. The thickness of the top metallization
(microstrip structure) is assumed to be zero. The two lines
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which form the coupled line structure are denoted as line 1
and line 2, respectively. The outer contours of the metallic
strips are described by the periodic functions w(z) and
w®(z) and the inner contours by w®(z) and w?(z) (Fig.
1(b)). The widths of the two metal strips are w®(z) =
wD(2)~w®(2)| and wO(z)=|w@(z)~ w(z)|. The
functions wM@(z), w-A(z), and w-@(z) are periodic
functions with periodicity p in relation to the z coordinate.
As in the case of the single line, only structures with even
contour functions will be investigated here (see arguments
in [1]):

wi(z) =wh(=z),wP=wO(-2), 1=1,2. (1)

Additionally only lines which fulfill the following condi-
tions:

wP(z) = =wB(z+p/2).wP(z) = —wP(z+p/2)

(2)

shall be considered. These additional requirements, which
are fulfilled by the coupled microstrip line shown in Fig. 1,
drastically reduce the numerical expense in the computa-
tion process.

Line structures of the type shown in Fig. 1 are no longer
symmetric with respect to the z axis as in the case of the
single lines treated in [1]. Therefore the potential functions
cannot be written as even or odd functions with respect to
the x coordinate, as in the case of the single line [1, eq.
(5)], and additional sine and cosine functions must be
considered:

(I)lk(x7 y) Z ank sm( ynk(y+y ))'Sin(kan)
n=1
+ X cpesin(k,(y+ ) -cos(k,,x)
m=0
lIjlk('x’y Z nk’ COS( ynk(y+y ))‘COS(kan)
Z mk COS( ymk(y+yl))'5in(kxmx) (3)
with i=LII, y =d, yl=—h, k,,=(n—-05n/a, k,,
=ma/a, and
kvnk_kz_ _181%’
ke =kl — ki, — B, kl=ki
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Nonuniform, coupled microstrip lines. (a) Cross-sectional view. (b) Example of two coupled lines with sinusoidal

coupling slot structure.

The calculation of the electric and the magnetic field
strength from the potential functions can be performed in

the same way as in the case of the single line. Also, the -

components of the surface current density are no longer
even or odd functions of the x coordinate, and the two-
dimensional Fourier series for J, and the J, now must be
written as

+ o0

L= 3

k= —o00

o0
+ Y J,,.c08 (kxmx)} e Pz
m=0

+ 00

L= X

k=-o

+ Z esin(k, x)}efﬂkZ. (4)

{ Z ank Sin(kxnx)
n=1

| s (k)

The x and z components of the electric field strength in
the substrate surface, considering the total potential func-
tions in (3), are

Ely-0= +§ {Z

k=—-00

xxnk xnk +T xznk nk)Sin(kxn'x)

+ Z (.] xxmk xmk+rzkazmk)

-cos (kxmx)} e /P
+ o0
Ez'_v=0= Z { Z ( xznk xnk+J zznk znk)
k=—0 \n=
-cos(kx,,x)

+Z(

xzmk xmk + jrzzmk']zmk)

.sin(kmx)} e IBis, (5)

The coefficients I, ., ',z and T, are identical with
those given in [1, eq. (8b)]. The coefficients I, ... L'y, pes

and I,,,,, can also be calculated from [1, eq. (8b)] if the
index n is replaced by m, and additionally the coefficients
I.,..x are multiplied by —1.

As in the case of the single line, the surface current
density is developed into a series using a functional system
which will be described later [1, eq. (9)]. If J, is the
component of the surface current density normal to the

strip contour and J, is the component parallel to it,

[Ju]z [cos(a(x,z)) —sin(a(x,z))][]x]zf [JX}
J, sin(a(x, z)) cos{a(x,z)) ||/, J,
(6)

with a(x, z) given by [1, eq. (15}]. J, must vanish on the
strip contour. J, must fulfill the edge condition [6], i.e., for
the infinitely thin metallization it must have a singularity
of the order O(p~ %) at the strip edge. The edge condition
is not essentially changed in the case of curved edges [7]. A
series description of these two components now is

2 o + 00

Z Z Y u' XM (x,z)e”
=11=1/=—-o00

2 ] + 00

Z Z Y uPz(x, z) et (7)
=li=1/=-0o

where the index » describes lines 1 and 2, respectively.
Because of the varying line width, the expansion functions
X®(x,z) and Z(x,z) must depend on the z coordi-
nate. The expansion functions X®(x,z) and Z®(x, z)
have nonzero values only on line 1 and vanish otherwise,
whereas the functions X@(x, z) and Z®(x. z) have non-
zero values only on line 2. If all the conditions which have
been formulated for the eigenvalue problem above are
taken into account, the coefficients of the two-dimensional
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Fouriers series expansion (4) are found from

o0
o= 2 L X uPCXSG) A+ pPSZST),
v=11=11[=—0o0
2
=) Z Z — juPSXCH) + vPCZCN)
v=11=11[=—-00

+ 00
=2 Y X upCXCH) + jpPSzcl),

1
v=1l1=1/=~0o0

[e)
Lomie= Z > Z — JuPSXS ) + v PCZS5) (8)
v=1i1=1Il=~e
with the abbreviations given in the Appendix. Due to the
restrictive conditions (1) and (2) which have been assumed
for the line geometry, special relations between the ab-
breviations are valid (see Appendix, eq. (A2)).

The two metal strips on top of the substrate and the
ground metallization form a three-conductor system.
Therefore two possible fundamental modes must exist on
this line structure. If the amplitude D, of the slot contour
function (Fig. 1) decreases to zero, these solutions must
converge to the fundamental even and odd mode of two
uniform coupled microstrip lines. Therefore these modes
shall be called even and odd also in the case of the
nonuniform coupled lines, despite the fact that the electro-
magnetic field does not have an even or odd symmetry
with respect to the z axis.

For the fundamental even mode the condition

up =~ (=1)u oP=(=1%P (9
and for the fundamental odd mode the condition
uP = (~1)"up 0P ==(=1D)"sP  (10)
must be valid because of symmetry aspects. Using these
relations, the Fourier series coefficients given in (8) again
can be simplified.
Using the Fourier series coefficients of the surface cur-
rent density given in (8), the x and z components of the

electric field in the surface of the substrate material can be
found as

E I}—O

S 2[3 5 (P

1=17l=-00 k=—00 n=1
1) :
+ Uz(l Rlnlk)snl(kxnx)

Z (juzl milk

+ vzl Rzmlk)cos(kxm )]ejBAZ

SR z[s 5 (0

1=11l=—00 k=—0o0 n=1

+ jUt(ll)Stnlk) €os (kxnx)

8 2 ( zl tmlk

m=1

+ jvz(ll)Stmlkj Sin(kxmx)}ejﬁ"z

(11)

with
8, =1 for k even and even modes or k odd and odd modes

8, = 0 for k even and odd modes or k& odd and even modes
and

8, =1 for k even and odd modes or k odd and even modes

8, =0 for k odd and odd modes or k even and even modes.

The abbreviations again are given in the Appendix
(eq. (A3)).

The total electromagnetic field of coupled nonuniform
microstrip lines is not symmetrical with respect to the x
coordinate, as it is in the case of uniform symmetric
coupled microstrip lines. Nevertheless each space harmonic
partial field (see [1]) contributes only an even or an odd
part to the total field, as can be seen from (11). Therefore
the even and the odd mode on lines which fulfill the
conditions given in (1) and (2) can be computed sep-
arately.

The further solution of the eigenvalue problem is nearly
identical to the case of the single line [1]. Galerkin’s
method is used for the even modes and the odd modes
separately. The expansion functions which are applied to
(5) are

X =sin(ing)-s,, (&)
ZW =cos((i-1)mt)-s,(£)

with Maxwell’s edge function s,,

1
l8)= V1-4(£-0.5)

for wh(z) < x <wh(2).

The functions given in (12) are developed into Fourier
series. The integration with respect to the x direction can
be performed analytically; with respect to the z axis it
must be done numerically.

From the application of Galerkin’s method, an infinite
equation system with a real and symmetric coefficient
matrix is derived for the even and odd modes. The series
expansions used in this equation system will be truncated
at indices I, L, and N, as in the case of the single line [1].
Again, the series for index k are truncated at —(K + L)
and +(K + L). Elements which contain Fourier coeffi-
cients of expansion functions with an index having an
absolute value larger than K are set to zero. The ad-
ditional series for index m will be truncated at the same
index N as the series for index n. Two truncation indices
I, and I, are used for the series of the J, and the J,
components, where I, should be larger than I,. As will be
explained later, the choice of 7, =3 and I, = 6 is sufficient
for convergence. Therefore the convergence behavior of
the method only needs to be discussed in relation to the
truncation indices N, K of the Fourier series of the expan-
sion functions and the truncation index L of the Fourier
series describing the surface current density.

The solutions of the eigenvalue problem again are de-
termined by searching the zeros of the determinant of the

(12)

and £= (x — wo(l)(z))/w(l)(z)

(13)
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finite system matrix. As in the case of the single lines, in
addition to microstrip modes, waveguide modes can be
found as solutions of the closed boundary value problem
shown in Fig. 1. All solutions have adjoint higher order
solutions with a phase coefficient which is changed by
2un/p (p==21,2,---). The solutions can be classified
using the same method as in the case of the single line.

III. THE CONVERGENCE OF THE METHOD

The convergence of the method described is analyzed
using a coupled line structure with a sinusoidal contour
function of the coupling slot, as shown in Fig. 1(b). The
geometrical parameters of the line structure used here are
w,=|wd —w®| =100 mm, s=042 mm, p=_8.75 mm,
and D,=1.0 mm. The substrate material has a height
h=1.56 mm and a relative dielectric constant ¢, = 2.32.

As in the case of the nonuniform single microstrip line,
the accuracy of the computed effective dielectric constant
depends on the number of expansion functions as well as
the number of Fourier coefficients which have been taken
into account for calculating the surface current density.
Additionally, it depends on the accurate description of the
expansion functions in the spectral domain, i.e., on the
number of coefficients considered of the Fourier series for
the electromagnetic fields.

Concerning the transformation of the expansion func-
tions into the spectral domain, it must be considered that

not only the transformation of the expansion functions.

itself but also the transformation of the contour function
of the coupling slot must be carried out with sufficient
accuracy. For the transformation of the expansion func-
tions into the spectral domain, in the x direction N =
max(4* I * Fxa/wy,, 4a/s) spectral terms will be con-
sidered. Here w,, is the smallest strip width of lines 1 and
2, and 2a is the width of the metallic shielding. F is a
numerical factor describing the value of N. It is found that
for the expansion functions given in (12) the convergence
of the method is achieved for F=2. If it is required that
the error of the effective dielectric constant be less than 0.2
percent, six v components (I, =6) and three u compo-
nents (I, = 3) (see (7)) of the surface current density must
be taken into account.

Fig. 2 shows the error of the numerically determined
effective dielectric constant in relation to the cutoff index
K of the Fourier series expansion of the electromagnetic
field a) for the phase coefficient By =B8p/7=0.1 and
b) for 8, = 0.25. The error is calculated by comparing the
actual value of the effective dielectric constant with its
value for K =20 and L =7. Again, as in the case of the
single nonuniform line [1], the frequency dependence of
the convergence can be recognized. For values of the
normalized phase coefficient B8, =025 (A=8p, f=3
GHz), the convergence of the fundamental odd mode in
particular is much better than in the case of 8y, =0.1. As a
result it is found that for a sure convergence, K =
1.5+ N* D_/a Fourier coefficients have to be considered
in the transformation of the expansion functions into the
spectral domain. For the line structure considered this
means that the results are of satisfactory accuracy if K =13.
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Fig. 2. The convergence of the numérically determined effective dielec-
tric constants of two coupled microstrip lines with a sinusoidal cou-
pling slot structure as a function of the truncation index K of the
Fourier series describing the electromagnetic fields. Line parameters:
w, =W — w1 =100 mm, s =0.42 mm, p =8.75 mm, D, =1.0 mm.
Substrate material: d =1.56 mm, ¢, = 2.32.
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Fig. 3. The convergence of the numerically determined effective dielec-

tric constants of two coupled microstrip lines with a sinusoidal cou-
pling slot structure as a function of the truncation index L of the
Fourier series describing the surface current density. For line and
substrate parameters, see Fig. 2. .

Fig. 3 shows the relative error of the numerically de-
termined effective dielectric constant of the fundamental
even and odd modes in relation to the number L of the
Fourier coefficients of the surface current density consid-
ered. The actual values are compared to those values which
have been computed with K =20 and L=10. The
frequency dependence of the convergence is not as clear in
this case as in Fig. 2. The relative error of the numerically
determined effective dielectric constant is less than 0.05
percent if L > 7. ' '

Figs. 4 and 5 show equivalent results for the conver-
gence in the case of a coupled microstrip line with a
zigzag-shaped coupling slot. All geometrical parameters of
this line are identical with those of the line with sinusoidal-
ly shaped coupling slot. As can be seen from Fig. 4, the
cutoff index K must be larger than in the case of the
sinusoidally shaped coupling slot to reach the same relative
error for the numerically determined effective dielectric
constant. In this case the cutoff index K must be K =
2%« N+ D /a, and the result is reached for K> 20. A
similar result is found from Fig. 5, where the dependence
of the convergence on the number L of Fourier coeffi-
cients for the surface current description is shown. In this
case the error of the numerically determined effective
dielectric constant is less than 0.2 percent for L > 8. For
values of L < 7 the relative error is much larger than in the
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Fig. 4. The convergence of the numerically determined effective dielec-
tric constants of two coupled microstrip lines with a zigzag coupling
slot structure as a function of the truncation index K of the Fourier
series describing the electromagnetic fields. Line and substrate parame-
ters are given in Fig. 2.
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Fig. 5. The convergence of the numerically determined effective dielec-
tric constants of two coupled microstrip lines with a zigzag coupling
slot structure as a function of the truncation index L of the Fourier
series describing the surface current density. Line and substrate param-
eters are given 1n Fig. 2.

case of the line with sinusoidally shaped coupling slot. The
relative errors given in Figs. 4 and 5 are estimated by
comparing the actual values of e, with those computed
for K =20 and L =10.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In the case of the coupled nonuniform microstrip lines,
primary interest in the investigation is not in the frequency
dependence of the line parameters itself but (e.g. for the
design of directional couplers) in the fact that the phase
velocities of the fundamental even and odd modes may be
equalized by a proper choice of the coupling slot contour.
This effect has been used for the realization of phase
shifters [3] and directional couplers [2]-[4] in microstrip.

In Fig. 6 the effective dielectric constant of three differ-
ent coupled microstrip lines on polyguide substrate material
(¢,=2.202, h=1.56 mm) and with a sinusoidal contour of
the coupling slot is shown in relation to the amplitude D,
of the contour. The geometrical parameters of the lines are
identical with those of the lines discussed in Section III
(s =042 mm, w,=10.0 mm). Lines with periodicities of
p=28.75 mm, p=11.67 mm, and p=17.5 mm are investi-
gated at a wavelength of A =70 mm, which means that the
adjoint normalized phase coefficients are B, =Bp/7 =
0.25, 0.33, and 0.5, respectively.
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Fig. 6. Theoretical and experimental results for the effective dielectric
constants of the even and the odd mode on two coupled, nonuniform
microstrip lines with a sinusoidal coupling slot structure as a function
of the “amplitude” D, (see Fig. 1) and with the periodicity p as a
parameter.

As can be seen from Fig. 6, the effective dielectric
constant of the fundamental even mode is not greatly
influenced by the amplitude D_, whereas that of the funda-
mental odd mode is strongly dependent on D,. For the
example considered the effective dielectric constant of the
fundamental even mode is changed by only 7 percent if D,
increases from 0 to 2 mm; additionally the periodicity does
not have a big influence on e of the even mode. This
effect can be explained by the fact that the electromagnetic
field of the odd mode is much more concentrated near the
coupling slot than that of the even mode. Therefore the
influence of the slot contour on the phase velocity of the
odd mode is large, while the influence on the even mode
parameters is only small. Physically this means that for the
odd mode a big part of the electromagnetic energy is
traveling along the slot structure whereas the even mode to
a first approximation travels along the 7z axis, as in the
case of uniform coupled lines. This also means that the
odd mode exhibits more distinctively the typical slow wave
properties, e.g. the effective dielectric constant of the odd
mode becomes larger than e,=2.32 for D =1.5 mm,
whereas the increase of e, of the even mode is much
smaller (Fig. 6, cf. also [1]).

In Fig. 7 similar results are shown for the example of a
coupled microstrip line with a zigzag-shaped coupling slot.
The geometrical parameters are the same as in the case of
the line with a sinusoidal slot contour function. Initially
the results shown in Figs. 6 and 7 seem identical, but a
comparison in detail shows that the influence of the slot
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Fig. 7. Theoretical and experimental results for the effective dielectric
constants of the even and the odd mode on two coupled, nonuniform
microstrip lines with a zigzag coupling slot structure as a function of
the “amplitude” D, (see Fig. 1) and with the periodicity p as a
parameter.

amplitude D, on the effective dielectric constant of the odd
mode is larger for Fig. 6. The physical interpretation of
this effect is that the odd mode fields (to a first approxi-
mation) travel along the coupling slot contour, and there-
fore the effective distance which they have to cover is
larger in the case of the sinusoidal contour than the
zigzag-shaped contour.

Some experimental results from measurements are also
given in Figs. 6 and 7. The resonator method proposed by
Wolff [5] was used for measuring the effective dielectric
constants of the even and the odd modes. This method
eliminates the influence of the end effects of the resonator
structure by comparing the measured results of two reso-
nators of different lengths. The resonators must have iden-
tical geometries and the ratios of their lengths must be the
ratio of two integer numbers. This means in the case of
periodically nonuniform microstrip lines that only reso-
nators of lengths /, = np and I, = mp with n, m=1,2,3, - - -
and n# m can be used. Therefore only measurement re-
sults at certain wavelengths or frequencies which are de-
termined by the periodicity p of the line can be obtained.
The measurement results in Figs. 6 and 7 have been
obtained by using resonators with lengths of 70 mm and
35 mm. The long resonators were used as one-wavelength
resonators whereas the shorter ones were used as half-
wavelength resonators.

As can be seen from Fig. 6 and Fig. 7, the agreement
between theory and measurements is good. The agreement
is better in the case of the zigzag-shaped coupling slot
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contour because at the time of measurements no com-
puter-controlled mask cutter was available and the
sinusoidal contour function could be realized only with
low accuracy.

V. CONCLUSIONS

Periodically nonuniform microstrip lines have been
analyzed on the basis of a numerical field calculation.
Floquet’s theorem is used to express all field quantities in
terms of their spatial harmonics. The boundary value
problem has been formulated in a rigorous way and has
then been solved using Galerkin’s method in the Fourier-
transform domain. The convergence of the method and
numerical results have been discussed. These have been
compared to experiments for the effective dielectric con-
stants of the even and the odd modes. As a result it has
been shown that the even- and odd-mode effective dielec-
tric constants may be equalized for certain line geometries.
The numerical expense of the applied method is high.
Therefore the method in its present form will not be usable
in CAD programs for microwave circuits.

APPENDIX
The abbreviations used in (8) are
(_1)V+1 0+ p .
CXs$=———[""" [ Dcos(a) x
ap 2o wi(2)

-sin(k,,x)e/2"=k)2/P dx dz

(_1),,+1 20+ P Luw)(z) .
SZS{=——[" " [ O= jsin(a®)Z®
ap 29 wi ()
-sin(k,,x)e/2™=R2/p dx dz
(—1)V+1 Zo+ p )
SXC=———— [ " ["" O~ jsin(a®) X
ap Zp W;”)(Z)

-cos (k,,x)e/*™!=k1/P dx dz

1
) (“1)”+ 20T P Lw)(z)
CZC) = —— f f D o8 () ZP)

ip Zo wi(z2)

-cos(k,x)e/2m=R2/P dx dy

(_1)”1 0P ()
CXCl = —“—/ f " eos(a®) X
ap 20 w(z)

-cos(k,,,x)e2"=k2/p dx dz

v+1
- (—1) + 2o+ P W,“')(Z) L. o )
SZCYh=———[" " [V jsin(a®)Z]

ip Zg Wé”)(l)
-cos(k,,x)e?=12/P dx dz

v+1
(’ ) 0P Lyt p
SXSy=—— [ [ jsin(a®) X
ap 2z wi (=)

-sin(k,,,x)e’2"U=R/P dx dz
1
(—1)V+ zot+p (7)
CZSGy=———[" " [ Vcos(a®)Z
a T wE)

-sin(k,,,x)e/2™=R/P dx dz. (A1)
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(1

(2]

The coefficients are connected by

cxs@ = - (-1)""Ycxs),
CX Cz(rf;)lk ( - 1)(1 - k)CX Cz(r%z)lk
czc@, = (-1)"" ez,

CZS(r%z)Ik == ( - 1)(1 - k)CZSi(ri)lk

SXC@, =—(-1)"" “sxc®,
SXS2, = (-1 sxs®,

SZ8Z, = (-1)""szs),

SZC2, =—-(-1)""PszcW,.
The abbreviations used in (11) are

Pyt = TaantCXS e = T i SXCH
Qiate = Voo SXCHh = TaomiCXS S
Rk = TeamiCZCH N = Tanni SZS G

Sintk = LeontCZCGN — Tasni SZS
Pt = TaxmiCXCO = Tazpui SXS S
Qimtic = CoomiS XSSk = Tz miCX TG
Rt = T miCZS 5 = TaxmiSZC S
Simtk = LezmiCZS 50k = CazmiSZC i (A3)
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